Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Toxicology ; 504: 153804, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614205

RESUMO

Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.

2.
Arch Toxicol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551724

RESUMO

Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.

3.
Biochem Pharmacol ; : 116056, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346541

RESUMO

Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.

5.
Toxicol Sci ; 198(2): 328-346, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38291912

RESUMO

Acute kidney injury (AKI) is a common complication in acetaminophen (APAP) overdose patients and can negatively impact prognosis. Unfortunately, N-acetylcysteine, which is the standard of care for the treatment of APAP hepatotoxicity does not prevent APAP-induced AKI. We have previously demonstrated the renal metabolism of APAP and identified fomepizole (4-methylpyrazole, 4MP) as a therapeutic option to prevent APAP-induced nephrotoxicity. However, the kidney has several functionally distinct regions, and the dose-dependent effects of APAP on renal response and regional specificity of APAP metabolism are unknown. These aspects were examined in this study using C57BL/6J mice treated with 300-1200 mg/kg APAP and mass spectrometry imaging (MSI) to provide spatial cues relevant to APAP metabolism and the effects of 4MP. We find that renal APAP metabolism and generation of the nonoxidative (APAP-GLUC and APAP-SULF) and oxidative metabolites (APAP-GSH, APAP-CYS, and APAP-NAC) were dose-dependently increased in the kidney. This was recapitulated on MSI which revealed that APAP overdose causes an accumulation of APAP and APAP GLUC in the inner medulla and APAP-CYS in the outer medulla of the kidney. APAP-GSH, APAP-NAC, and APAP-SULF were localized mainly to the outer medulla and the cortex where CYP2E1 expression was evident. Interestingly, APAP also induced a redistribution of reduced GSH, with an increase in oxidized GSH within the kidney cortex. 4MP ameliorated these region-specific variations in the formation of APAP metabolites in renal tissue sections. In conclusion, APAP metabolism has a distinct regional distribution within the kidney, the understanding of which provides insight into downstream mechanisms of APAP-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Fomepizol/uso terapêutico , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Espectrometria de Massas , Análise Espacial , Injúria Renal Aguda/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
6.
Annu Rev Pathol ; 19: 453-478, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265880

RESUMO

Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Animais , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Apoptose , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Autofagia
7.
Toxicology ; 500: 153692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042273

RESUMO

Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Antídotos/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Apoptose , Mitocôndrias/metabolismo , Rim/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
8.
Hepatology ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910653

RESUMO

BACKGROUND AND AIMS: Patients with acetaminophen-induced acute liver failure are more likely to die while on the liver transplant waiting list than those with other causes of acute liver failure. Therefore, there is an urgent need for prognostic biomarkers that can predict the need for liver transplantation early after an acetaminophen overdose. APPROACH AND RESULTS: We evaluated the prognostic potential of plasma chemokine C-X-C motif ligand 14 (CXCL14) concentrations in patients with acetaminophen (APAP) overdose (n=50) and found that CXCL14 is significantly higher in nonsurviving patients compared to survivors with acute liver failure ( p < 0.001). Logistic regression and AUROC analyses revealed that CXCL14 outperformed the MELD score, better discriminating between nonsurvivors and survivors. We validated these data in a separate cohort of samples obtained from the Acute Liver Failure Study Group (n = 80), where MELD and CXCL14 had similar AUC (0.778), but CXCL14 demonstrated higher specificity (81.2 vs. 52.6) and positive predictive value (82.4 vs. 65.4) for death or need for liver transplantation. Next, combining the patient cohorts and using a machine learning training/testing scheme to mimic the clinical scenario, we found that CXCL14 outperformed MELD based on AUC (0.821 vs. 0.787); however, combining MELD and CXCL14 yielded the best AUC (0.860). CONCLUSIONS: We find in 2 independent cohorts of acetaminophen overdose patients that circulating CXCL14 concentration is a novel early prognostic biomarker for poor outcomes, which may aid in guiding decisions regarding patient management. Moreover, our findings reveal that CXCL14 performs best when measured soon after patient presentation to the clinic, highlighting its importance for early warning of poor prognosis.

9.
J Biochem Mol Toxicol ; 37(12): e23505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37598316

RESUMO

Acetaminophen (APAP) overdose can cause severe liver injury and acute liver failure. The only clinically approved antidote, N-acetylcysteine (NAC), is highly effective but has a narrow therapeutic window. In the last 2 decades, activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates acute phase proteins and antioxidant defense genes, has emerged as a putative new therapeutic target against APAP hepatotoxicity. However, virtually all studies that propose Nrf2 activation as mechanism of protection used prolonged pretreatment, which is not a clinically feasible approach to treat a drug overdose. Therefore, the objective of this study was to assess if therapeutic activation of Nrf2 is a viable approach to treat liver injury after APAP overdose. We used the water-soluble Nrf2 activator sulforaphane (SFN; 5 mg/kg) in a murine model of APAP hepatotoxicity (300 mg/kg). Our results indicate that short-term treatment (≤3 h) with SFN alone did not activate Nrf2 or its target genes. However, posttreatment with SFN after APAP partially protected at 6 h likely due to more rapid activation of the Nrf2-target gene heme oxygenase-1. A direct comparison of SFN with NAC given at 1 h after APAP showed a superior protection with NAC, which was maintained at 24 h unlike with SFN. Thus, Nrf2 activators have inherent problems like the need to create a cellular stress to activate Nrf2 and delayed adaptive responses which may hamper sustained protection against APAP hepatotoxicity. Thus, compared to the more direct acting antidote NAC, Nrf2 activators are less suitable for this indication.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Antídotos/farmacologia , Antídotos/uso terapêutico , Antídotos/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
10.
Drug Metab Dispos ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567742

RESUMO

Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion and protein adduct formation are critical initiating events, more recently the mitochondria came into focus as important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology including autophagy, mitophagy, Nrf2 activation and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. Significance Statement Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.

11.
Livers ; 3(2): 219-231, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37377765

RESUMO

Mitochondria are critical organelles responsible for the maintenance of cellular energy homeostasis. Thus, their dysfunction can have severe consequences in cells responsible for energy-intensive metabolic function, such as hepatocytes. Extensive research over the last decades have identified compromised mitochondrial function as a central feature in the pathophysiology of liver injury induced by an acetaminophen (APAP) overdose, the most common cause of acute liver failure in the United States. While hepatocyte mitochondrial oxidative and nitrosative stress coupled with induction of the mitochondrial permeability transition are well recognized after an APAP overdose, recent studies have revealed additional details about the organelle's role in APAP pathophysiology. This concise review highlights these new advances, which establish the central role of the mitochondria in APAP pathophysiology, and places them in the context of earlier information in the literature. Adaptive alterations in mitochondrial morphology as well as the role of cellular iron in mitochondrial dysfunction and the organelle's importance in liver recovery after APAP-induced injury will be discussed.

12.
Arch Toxicol ; 97(5): 1397-1412, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928416

RESUMO

Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial. Thus, the objective of the current study was to assess whether a potential contribution of neutrophils was dependent on the APAP dose and the sex of the animals. Male and female C57BL/6 J mice were treated with 300 or 600 mg/kg APAP and the injury and inflammatory cell recruitment was evaluated between 6 and 48 h. In both male and female mice, ALT plasma levels and the areas of necrosis peaked at 12-24 h after both doses with more severe injury at the higher dose. In addition, Ly6g-positive neutrophils started to accumulate in the liver at 6 h and peaked at 6-12 h after 300 mg/kg and 12-24 h after 600 mg/kg for both sexes; however, the absolute numbers of hepatic neutrophils in the liver were significantly higher after the 600 mg/kg dose. Neutrophil infiltration correlated with mRNA levels of the neutrophil chemoattractant Cxcl2 in the liver. Treating mice with an anti-Cxcl2 antibody at 2 h after APAP significantly reduced neutrophil accumulation at 24 h after both doses and in both sexes. However, the injury was significantly reduced only after the high overdose. Thus, neutrophils, recruited through Cxcl2, have no effect on APAP-induced liver injury after 300 mg/kg but aggravate the injury only after severe overdoses.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Masculino , Feminino , Animais , Camundongos , Neutrófilos , Acetaminofen/toxicidade , Camundongos Endogâmicos C57BL , Fígado , Necrose , Doença Hepática Induzida por Substâncias e Drogas/etiologia
14.
J Am Soc Mass Spectrom ; 33(11): 2094-2107, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36223142

RESUMO

Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and hepatotoxicity is initiated by a reactive metabolite which induces characteristic centrilobular necrosis. The only clinically available antidote is N-acetylcysteine, which has limited efficacy, and we have identified 4-methylpyrazole (4MP, Fomepizole) as a strong alternate therapeutic option, protecting against generation and downstream effects of the cytotoxic reactive metabolite in the clinically relevant C57BL/6J mouse model and in humans. However, despite the regionally restricted necrosis after APAP, our earlier studies on APAP metabolites in biofluids or whole tissue homogenate lack the spatial information needed to understand region-specific consequences of reactive metabolite formation after APAP overdose. Thus, to gain insight into the regional variation in APAP metabolism and study the influence of 4MP, we established a desorption electrospray ionization mass spectrometry imaging (DESI-MSI) platform for generation of ion images for APAP and its metabolites under ambient air, without chemical labeling or a prior coating of tissue which reduces chemical interference and perturbation of small molecule tissue localization. The spatial intensity and distribution of both oxidative and nonoxidative APAP metabolites were determined from mouse liver sections after a range of APAP overdoses. Importantly, exclusive differential signal intensities in metabolite abundance were noted in the tissue microenvironment, and 4MP treatment substantially influenced this topographical distribution.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Camundongos Endogâmicos C57BL , Fígado , Necrose/metabolismo
15.
Arch Toxicol ; 96(12): 3315-3329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057886

RESUMO

The persistence of hepatotoxicity induced by N-acetyl-para-aminophenol (Acetaminophen or Paracetamol, abbreviated as APAP) as the most common cause of acute liver failure in the United States, despite the availability of N-acetylcysteine, illustrates the clinical relevance of additional therapeutic approaches. While human mesenchymal stem cells (MSCs) have shown protection in mouse models of liver injury, the MSCs used are generally not cleared for human use and it is unclear whether these effects are due to xenotransplantation. Here we evaluated GMP manufactured clinical grade human Wharton's Jelly mesenchymal stem cells (WJMSCs), which are currently being investigated in human clinical trials, in a mouse model of APAP hepatotoxicity in comparison to human dermal fibroblasts (HDFs) to address these issues. C57BL6J mice were treated with a moderate APAP overdose (300 mg/kg) and WJMSCs were administered 90 min later. Liver injury was evaluated at 6 and 24 h after APAP. WJMSCs treatment reduced APAP-induced liver injury at both time points unlike HDFs, which showed no protection. APAP-induced JNK activation as well as AIF and Smac release from mitochondria were prevented by WJMSCs treatment without influencing APAP bioactivation. Mechanistically, WJMSCs treatment upregulated expression of Gclc and Gclm to enhance recovery of liver GSH levels to attenuate mitochondrial dysfunction and accelerated recovery of pericentral hepatocytes to re-establish liver zonation and promote liver homeostasis. Notably, preventing GSH resynthesis with buthionine sulfoximine prevented the protective effects of WJMSCs. These data indicate that these GMP-manufactured WJMCs could be a clinically relevant therapeutic approach in the management of APAP hepatotoxicity in humans.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Camundongos , Animais , Acetaminofen/metabolismo , Acetilcisteína/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Butionina Sulfoximina/metabolismo , Butionina Sulfoximina/farmacologia , Fígado , Hepatócitos , Modelos Animais de Doenças , Fibroblastos , Camundongos Endogâmicos C57BL
16.
Toxicol Sci ; 188(2): 248-260, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642939

RESUMO

Acetaminophen (APAP) overdose is the main cause of acute liver failure in Western countries. The mechanism of APAP hepatotoxicity is associated with centrilobular necrosis which initiates infiltration of neutrophils, monocytes, and other leukocytes to the area of necrosis. Although it has been recognized that this infiltration of immune cells plays a critical role in promoting liver repair, mechanism of immune cell clearance that is important for resolution of inflammation and the return to normal homeostasis are not well characterized. CXCR4 is a chemokine receptor expressed on hepatocytes as well as neutrophils, monocytes, and hematopoietic stem cells. CXCR4 function is dependent on its selective expression on different cell types and thus can vary depending on the pathophysiology. This study aimed to investigate the crosstalk between hepatocytes and macrophages through CXCR4 to promote macrophage apoptosis after APAP overdose. C57BL/6J mice were subjected to APAP overdose (300 mg/kg). Flow cytometry and immunohistochemistry were used to determine the mode of cell death of macrophages and expression pattern of CXCR4 during the resolution phase of APAP hepatotoxicity. The impact of CXCR4 in regulation of macrophage apoptosis and liver recovery was assessed after administration of a monoclonal antibody against CXCR4. RNA sequencing analysis was performed on flow cytometry sorted CXCR4+ macrophages at 72 h to confirm the apoptotic cell death of macrophages. Our data indicate that the inflammatory response is resolved by recovering hepatocytes through induction of CXCR4 on macrophages, which triggers their cell death by apoptosis at the end of the recovery phase.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo
17.
Toxicol Appl Pharmacol ; 445: 116043, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513057

RESUMO

Acetaminophen (APAP) hepatotoxicity, a leading cause of acute liver failure in western countries, is characterized by mitochondrial superoxide and peroxynitrite formation. However, the role of iron, especially as facilitator of lipid peroxidation (LPO), has been controversial. Our aim was to determine the mechanism by which iron promotes cell death in this context. Fasted male C57BL/6J mice were treated with the iron chelator deferoxamine, minocycline (inhibitor of the mitochondrial calcium uniporter) or vehicle 1 h before 300 mg/kg APAP. Deferoxamine and minocycline significantly attenuated APAP-induced elevations in serum alanine amino transferase levels and hepatic necrosis at 6 h. This protection correlated with reduced 3-nitro-tyrosine protein adducts; LPO (malondialdehyde, 4-hydroxynonenal) was not detected. Activation of c-jun N-terminal kinase (JNK) was not affected but mitochondrial release of intermembrane proteins was reduced suggesting that the effect of iron was at the level of mitochondria. Co-treatment of APAP with FeSO4 exacerbated liver injury and protein nitration and triggered significant LPO; all effects were reversed by deferoxamine. Thus, after APAP overdose, iron imported into mitochondria facilitates protein nitration by peroxynitrite triggering mitochondrial dysfunction and cell death. Under these conditions, endogenous defense mechanisms largely prevent LPO. However, after iron overload, protein nitration and LPO contribute to APAP hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Desferroxamina/farmacologia , Hepatócitos , Ferro/metabolismo , Peroxidação de Lipídeos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/farmacologia , Mitocôndrias Hepáticas , Estresse Oxidativo , Ácido Peroxinitroso/farmacologia
18.
Food Chem Toxicol ; 163: 112911, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35292334

RESUMO

Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the USA. The short therapeutic window of the current antidote, N-acetylcysteine (NAC) highlights the need for novel late acting therapeutics. The neuronal guidance cue netrin-1 provides delayed protection against APAP hepatotoxicity through the adenosine A2B receptor (A2BAR). The clinical relevance of this mechanism was investigated here by administration of the A2BAR agonist BAY 60-6583, after an APAP overdose (300 or 600 mg/kg) in fasted male and female C57BL/6J mice with assessment of liver injury 6 or 24 h after APAP in comparison to NAC. BAY 60-6583 treatment 1.5 h after APAP overdose (600 mg/kg) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation. Gender independent protection was sustained when BAY 60-6583 was given 6 h after APAP overdose (300 mg/kg), when NAC administration did not show benefit. This protection was accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h, accompanied by a decrease in neutrophil infiltration. Thus, our data emphasize the remarkable therapeutic utility of using an A2BAR agonist, which provides delayed protection long after the standard of care NAC ceased to be effective.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Overdose de Drogas/tratamento farmacológico , Feminino , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor A2B de Adenosina/uso terapêutico
19.
Arch Toxicol ; 96(2): 453-465, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978586

RESUMO

Acetaminophen (APAP) overdose can cause hepatotoxicity and even liver failure. N-acetylcysteine (NAC) is still the only FDA-approved antidote against APAP overdose 40 years after its introduction. The standard oral or intravenous dosing regimen of NAC is highly effective for patients with moderate overdoses who present within 8 h of APAP ingestion. However, for late-presenting patients or after ingestion of very large overdoses, the efficacy of NAC is diminished. Thus, additional antidotes with an extended therapeutic window may be needed for these patients. Fomepizole (4-methylpyrazole), a clinically approved antidote against methanol and ethylene glycol poisoning, recently emerged as a promising candidate. In animal studies, fomepizole effectively prevented APAP-induced liver injury by inhibiting Cyp2E1 when treated early, and by inhibiting c-jun N-terminal kinase (JNK) and oxidant stress when treated after the metabolism phase. In addition, fomepizole treatment, unlike NAC, prevented APAP-induced kidney damage and promoted hepatic regeneration in mice. These mechanisms of protection (inhibition of Cyp2E1 and JNK) and an extended efficacy compared to NAC could be verified in primary human hepatocytes. Furthermore, the formation of oxidative metabolites was eliminated in healthy volunteers using the established treatment protocol for fomepizole in toxic alcohol and ethylene glycol poisoning. These mechanistic findings, together with the excellent safety profile after methanol and ethylene glycol poisoning and after an APAP overdose, suggest that fomepizole may be a promising antidote against APAP overdose that could be useful as adjunct treatment to NAC. Clinical trials to support this hypothesis are warranted.


Assuntos
Acetaminofen/envenenamento , Antídotos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Acetilcisteína/farmacologia , Analgésicos não Narcóticos/envenenamento , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Overdose de Drogas , Fomepizol/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Camundongos
20.
Livers ; 2(4): 425-435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36588962

RESUMO

Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1ß (IL-1ß), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...